45 research outputs found

    A multiobjective model for passive portfolio management: an application on the S&P 100 index

    Get PDF
    This is an author's accepted manuscript of an article published in: “Journal of Business Economics and Management"; Volume 14, Issue 4, 2013; copyright Taylor & Francis; available online at: http://dx.doi.org/10.3846/16111699.2012.668859Index tracking seeks to minimize the unsystematic risk component by imitating the movements of a reference index. Partial index tracking only considers a subset of the stocks in the index, enabling a substantial cost reduction in comparison with full tracking. Nevertheless, when heterogeneous investment profiles are to be satisfied, traditional index tracking techniques may need different stocks to build the different portfolios. The aim of this paper is to propose a methodology that enables a fund s manager to satisfy different clients investment profiles but using in all cases the same subset of stocks, and considering not only one particular criterion but a compromise between several criteria. For this purpose we use a mathematical programming model that considers the tracking error variance, the excess return and the variance of the portfolio plus the curvature of the tracking frontier. The curvature is not defined for a particular portfolio, but for all the portfolios in the tracking frontier. This way funds managers can offer their clients a wide range of risk-return combinations just picking the appropriate portfolio in the frontier, all of these portfolios sharing the same shares but with different weights. An example of our proposal is applied on the S&P 100.García García, F.; Guijarro Martínez, F.; Moya Clemente, I. (2013). A multiobjective model for passive portfolio management: an application on the S&P 100 index. Journal of Business Economics and Management. 14(4):758-775. doi:10.3846/16111699.2012.668859S758775144Aktan, B., Korsakienė, R., & Smaliukienė, R. (2010). TIME‐VARYING VOLATILITY MODELLING OF BALTIC STOCK MARKETS. Journal of Business Economics and Management, 11(3), 511-532. doi:10.3846/jbem.2010.25Ballestero, E., & Romero, C. (1991). A theorem connecting utility function optimization and compromise programming. Operations Research Letters, 10(7), 421-427. doi:10.1016/0167-6377(91)90045-qBeasley, J. E. (1990). OR-Library: Distributing Test Problems by Electronic Mail. Journal of the Operational Research Society, 41(11), 1069-1072. doi:10.1057/jors.1990.166Beasley, J. E., Meade, N., & Chang, T.-J. (2003). An evolutionary heuristic for the index tracking problem. European Journal of Operational Research, 148(3), 621-643. doi:10.1016/s0377-2217(02)00425-3Canakgoz, N. A., & Beasley, J. E. (2009). Mixed-integer programming approaches for index tracking and enhanced indexation. European Journal of Operational Research, 196(1), 384-399. doi:10.1016/j.ejor.2008.03.015Connor, G., & Leland, H. (1995). Cash Management for Index Tracking. Financial Analysts Journal, 51(6), 75-80. doi:10.2469/faj.v51.n6.1952Corielli, F., & Marcellino, M. (2006). Factor based index tracking. Journal of Banking & Finance, 30(8), 2215-2233. doi:10.1016/j.jbankfin.2005.07.012Derigs, U., & Nickel, N.-H. (2004). On a Local-Search Heuristic for a Class of Tracking Error Minimization Problems in Portfolio Management. Annals of Operations Research, 131(1-4), 45-77. doi:10.1023/b:anor.0000039512.98833.5aDose, C., & Cincotti, S. (2005). Clustering of financial time series with application to index and enhanced index tracking portfolio. Physica A: Statistical Mechanics and its Applications, 355(1), 145-151. doi:10.1016/j.physa.2005.02.078Focardi, S. M., & Fabozzi 3, F. J. (2004). A methodology for index tracking based on time-series clustering. Quantitative Finance, 4(4), 417-425. doi:10.1080/14697680400008668Gaivoronski, A. A., Krylov, S., & van der Wijst, N. (2005). Optimal portfolio selection and dynamic benchmark tracking. European Journal of Operational Research, 163(1), 115-131. doi:10.1016/j.ejor.2003.12.001Hallerbach, W. G., & Spronk, J. (2002). The relevance of MCDM for financial decisions. Journal of Multi-Criteria Decision Analysis, 11(4-5), 187-195. doi:10.1002/mcda.328Jarrett, J. E., & Schilling, J. (2008). DAILY VARIATION AND PREDICTING STOCK MARKET RETURNS FOR THE FRANKFURTER BÖRSE (STOCK MARKET). Journal of Business Economics and Management, 9(3), 189-198. doi:10.3846/1611-1699.2008.9.189-198Roll, R. (1992). A Mean/Variance Analysis of Tracking Error. The Journal of Portfolio Management, 18(4), 13-22. doi:10.3905/jpm.1992.701922Rudolf, M., Wolter, H.-J., & Zimmermann, H. (1999). A linear model for tracking error minimization. Journal of Banking & Finance, 23(1), 85-103. doi:10.1016/s0378-4266(98)00076-4Ruiz-Torrubiano, R., & Suárez, A. (2008). A hybrid optimization approach to index tracking. Annals of Operations Research, 166(1), 57-71. doi:10.1007/s10479-008-0404-4Rutkauskas, A. V., & Stasytyte, V. (s. f.). Decision Making Strategies in Global Exchange and Capital Markets. Advances and Innovations in Systems, Computing Sciences and Software Engineering, 17-22. doi:10.1007/978-1-4020-6264-3_4Tabata, Y., & Takeda, E. (1995). Bicriteria Optimization Problem of Designing an Index Fund. Journal of the Operational Research Society, 46(8), 1023-1032. doi:10.1057/jors.1995.139Teresienė, D. (2009). LITHUANIAN STOCK MARKET ANALYSIS USING A SET OF GARCH MODELS. Journal of Business Economics and Management, 10(4), 349-360. doi:10.3846/1611-1699.2009.10.349-36

    The role of fundamental solution in Potential and Regularity Theory for subelliptic PDE

    Get PDF
    In this survey we consider a general Hormander type operator, represented as a sum of squares of vector fields plus a drift and we outline the central role of the fundamental solution in developing Potential and Regularity Theory for solutions of related PDEs. After recalling the Gaussian behavior at infinity of the kernel, we show some mean value formulas on the level sets of the fundamental solution, which are the starting point to obtain a comprehensive parallel of the classical Potential Theory. Then we show that a precise knowledge of the fundamental solution leads to global regularity results, namely estimates at the boundary or on the whole space. Finally in the problem of regularity of non linear differential equations we need an ad hoc modification of the parametrix method, based on the properties of the fundamental solution of an approximating problem

    International project finance: review and implications for international finance and international business

    Get PDF

    The Sturm liouville problem and diffusion modelling

    No full text
    The short work suggests a connection between three relevant problems in different fields of probability theory and statistics: -the classification of quadratic variance functions exponential families -The classification of diffusion generators with polynomial eigenfunctions -the polynomial Sturm-Liouville proble

    Eigenfunctions based estimating martingales for perturbed diffusions

    No full text
    In this note we extend the methosd suggested by Kessler and Sorensen (1999) for estimating parameters in diffusions observed at discrete time intervals to a rather large class of perturbed diffusions. As an application, we present a test for assessing the membership of a diffusion into a given polynomial class

    Hedging with Energy

    No full text
    In the setting of diffusion models for price evolution, we suggest an easily implementable approximate evaluation formula for measuring the errors in option pricing and hedging due to volatility misspecification. The main tool we use in this paper is a (suitably modified) classical inequality for the L2 norm of the solution, and the derivatives of the solution, of a partial differential equation (the so-called “energy” inequality). This result allows us to give bounds on the errors implied by the use of approximate models for option valuation and hedging and can be used to justify formally some “folk” belief about the robustness of the Black and Scholes model. Surprisingly enough, the result can also be applied to improve pricing and hedging with an approximate model. When statistical or a priori information is available on the “true” volatility, the error measure given by the energy inequality can be minimized w.r.t. the parameters of the approximating model. The method suggested in this paper can help in conjugating statistical estimation of the volatility function derived from flexible but computationally cumbersome statistical models, with the use of analytically tractable approximate models calibrated using error estimates

    Factor based index tracking

    No full text
    Stock index tracking requires to build a portfolio of stocks (a replica) whose behavior is as close as possible to that of a given stock index. Typically, much fewer stocks should appear in the replica than in the index, and there should be no low frequency or integrated (persistent) components in the tracking error. The latter property is not satisfied by many commonly used methods for index track- ing. These are based on the in-sample minimization of a loss function, but do not take into account the dynamic properties of the index components. Moreover, most existing methods do not take into account the known structure of the index weight system. In this paper we represent the index components with a dynamic factor model. In this model the price of each stock in the index is driven by a set of common and idiosyncratic factors. Factors can be either integrated or stationary. We develop a procedure that, in a first step, builds a replica that is driven by the same persistent factors as the index. This procedure is grounded in recent results which suggest the application of principal component analysis for factor estimation even for integrated processes. In a second step, it is also possible to refine the replica so that it minimizes a specific loss function, as in the traditional approach. In both steps the replica weights depend on the existing information on the index weights system. An extended set of Monte Carlo simulations and an application to the most widely used index in the European stock market, the EuroStoxx50 index, provide substantial support for our approach. 25 2005 Elsevier B.V. All rights reserved

    Staying ahead on the curve: model risk and the term structure

    No full text
    This paper explores the link between the crosssectional estimation of the term structure of interest rates and the assumption of absence of dynamic noarbitrage opportunities. We address questions such as, Are the most commonly used crosssectional models of the term structure consistent with dynamic noarbitrage strategies? Or equivalently, can the same crosssectional model of the term structure be used a) to update the initial condition of the evolution of the yield curve, and b) for the design of dynamic hedging strategies? If this were the case, the same model could be used both for pricing, markingtomodel a book of derivatives, and for risk management reasons. We show that, in general, the answer is negative: in the case of the most generally used crosssectional models of the term structure, including exponential and cubic splines, any attempt to update the model to newly available information on security prices is necessarily deemed to generate hedging errors that would cumulate over time. The contribution of this paper is to discuss a very simple and parsimonious crosssectional model of the term structure that is both flexible and consistent with the dynamic noarbitrage restrictions, so that it can be sensibly used both for markingtomodel purposes and to run risk management strategies. Moreover, this model can be used to construct datasets on implied discount factors and spot rates that do not suffer from spurious violations of the dynamic noarbitrage restrictions
    corecore